respect to the ultimate tensile strength, except where otherwise
specified.

In the simplest form, the data may be plotted as cyclic pressure
versus cycles to failure. Because a summary curve utilizing this
parameter will be subsequently shown, it is sufficient to say, that,
since the tangential stress is proportional to diameter ratio, the
curve will consist of a series of widely separated lines correspond-
ing to each diameter ratio.

Fig. 5 shows normalized maximum tangential stress at the
bore which is defined as

o P W2+41 e
UTS UTSW:—1

as a function of eycles to failure, As would be expected, a large
amount of the diameter-ratio dependence has been removed. It
should be noted, however, that the least-squares line for the
smaller diameter ratio is at a higher value than the larger diameter
ratio. This is opposite to what would be expected. The actual

failure is probably some function of a combined stress condition
instead of a single principal stress.
Fig. 6 shows the difference in the principal stresses at the bore
as defined by
g, — 0, _ 2PW?
UTS  UTS(W? - 1)

as a function of the number of cycles to failure. As can be noted,
the diameter-ratio dependency is small with the larger diameter
ratio logically exhibiting the higher fatigue-strength characteris-
tics.

Fig. 7 shows the data in terms of the normalized octahedral
stress as defined by

(8)

#«{Ka — o)+ (o, — o)+ (g —v)’l—l-}% ©)
UTS i r T z z t 2

which, since o, = 0, yields

1
— [o02 + 0, — 00,17

; 10
initiation of the fatigue crack can probably be predicted by some UTsS 10)
cyclic stress or strain parameter independent of diameter ratio. A strain parameter defined by
The ecrack, however, must propagate over a larger area in the
larger diameter. Intuitively then, the larger diameter ratio g, — Vo, (11)
should be at a higher stress and life level. Based on this, fatigue E
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Fig. 7 Octahedral siress parameter versus cycles to failure
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